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ABSTRACT
In this paper, we build a speech privacy attack that exploits speech

reverberations from a smartphone’s inbuilt loudspeaker captured

via a zero-permission motion sensor (accelerometer). We design

our attack Spearphone, and demonstrate that speech reverberations

from inbuilt loudspeakers, at an appropriate loudness, can impact

the accelerometer, leaking sensitive information about the speech.

In particular, we show that by exploiting the affected accelerometer

readings and carefully selecting feature sets along with off-the-shelf

machine learning techniques, Spearphone can perform gender clas-

sification (accuracy over 90%) and speaker identification (accuracy

over 80%) for the audio/video playback on the smartphone for our

recorded dataset. We use lightweight classifiers and an off-the-shelf

machine learning tool so that the attacking effort is minimized,

making our attack practical. Our results with testing the attack

on a voice call and voice assistant response were also encourag-

ing, showcasing the impact of the proposed attack. In addition,

we perform speech recognition and speech reconstruction to extract

more information about the eavesdropped speech to an extent. Our

work brings to light a fundamental design vulnerability in many

currently-deployed smartphones, which may put people’s speech

privacy at risk while using the smartphone in the loudspeaker mode

during phone calls, media playback or voice assistant interactions.

CCS CONCEPTS

• Security and privacy→ Side-channel analysis and counter-

measures;
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1 INTRODUCTION

Today’s smartphones contain a plethora of sensors aiming to pro-

vide a comprehensive and rich user experience. A known security

vulnerability associated with smartphone motion sensors is their

unrestricted access on most current mobile platforms (e.g., the An-

droid OS), essentially making them zero-permission sensors. Recent

research [10, 11, 16, 26–28] exploits motion sensors for eavesdrop-

ping on keystrokes, touch input and speech. Since the Android

mobile operating system has a market share of 75.16% worldwide

and 42.75% in the United States [4], this security vulnerability is of

extreme concern especially in terms of speech privacy.

Expanding on this research line in significant ways, we investi-

gate a new attack vulnerability in motion sensors that arises from

the co-located speech source on the smartphone (smartphone’s

in-built loudspeakers). Our work exploits the motion sensors (ac-

celerometer) of a smartphone to capture the speech reverberations

(surface-aided and aerial) generated from the smartphone’s loud-

speaker while listening onto a voice call or any media in the loud-

speaker mode. The reverberations are generated due to the smart-

phone’s body vibrating due to forced vibrations [18], similar to a

sounding board of a piano. Using this attack, we show that it is

possible to compromise the speech privacy of a live human voice,

without the need of recording and replaying it at a later time instant.

As the threat of exploiting smartphone’s loudspeaker privacy using

motion sensor arises due to co-location of the speech source, it

showcases the perils to a user’s privacy in seemingly inconspicuous

threat instances as described below:

• Remote Caller’s Speech Privacy Leakage in Voice Calls: The pro-

posed attack can eavesdrop on voice calls to compromise the

speech privacy of a remote end user in the call. A smartphone’s

loudspeaker can leak the speech characteristics of a remote end

party in a voice call via its motion sensors. These speech charac-

teristics may be their gender, identity or the spoken words during

the call (by performing speech recognition or reconstruction).
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• Speech Media Privacy Leakage: In the proposed attack, on-board

motion sensors can also be exploited to reveal any audio/video

file played on the victim’s smartphone loudspeaker. The attacker

could exploit motion sensors, by logging the output of motion

sensors during the media play, and learn about the audio played

by the victim. This fact could also be exploited by advertisement

agencies to spam the victim by using the information gleaned

from the eavesdropped media content (e.g., favorite artist).

• Voice Assistant Response Leakage: Our proposed threatmay extend

to phone’s smart voice assistant (like Google Assistant or Sam-

sung Bixby), that communicate by reaffirming any given voice

command using the phone’s loudspeakers. While this action pro-

vides a better user experience, it also opens up the possibility of

the attacker learning the voice assistant’s responses.

Considering these attack instances, we explore the vulnerability

of motion sensors to speech reverberations, from the smartphone’s

loudspeakers, conducted via the smartphone’s body. We also exam-

ine the frequency response of the motion sensors and the hardware

design of the smartphones that leads to the propagation of the

speech reverberations from the phone’s loudspeaker to the embed-

ded motion sensors. Our contributions are three-fold:

(1) A New Speech Privacy A!ack System: We propose a novel

and lightweight attack, Spearphone (Section 4), that compro-

mises speech privacy by exploiting the embeddedmotion sensor

(accelerometer) of a smartphone. Our work targets speech re-

verberations (surface-aided and aerial vibrations), produced by

the smartphone’s loudspeakers, rather than the phone owner’s

voice, directed towards the phone’s microphone. This includes

privacy violation of remote caller on a voice call (live at remote

end but still played through phone owner’s loudspeakers), user

behavior by leaking information about audio/video played on

phone’s loudspeakers or the smartphone’s voice assistant’s re-

sponse to a user query (including the issued command) through

the loudspeakers in a preset voice. Accelerometers are not de-

signed to sense speech as they passively reject air-borne vibra-

tions [18]. Thus, it is very hard for an attacker to eavesdrop

on speech using accelerometer readings. Prior work on motion

sensor exploits required the speech to be replayed via external

loudspeakers while a smartphone (with embedded motion sensors)

was placed on the same surface as the loudspeaker. In contrast, our

work leverages the speaker inbuilt in the smartphone to provide

a fundamentally different attack vector geared towards eaves-

dropping on speech reverberations (Section 2). Spearphone is a

three-pronged attack that performs gender, speaker and speech

classification using accelerometer’s response to the speech re-

verberations, generated by the victim’s phone’s speakers.

(2) A!ack Design and Implementation: As a pre-requisite to the

Spearphone attack, we perform frequency response analysis

of motion sensors (accelerometer and gyroscope) to determine

the sensor most susceptible to our attack (Section 3). We find

accelerometer to be the most receptive and therefore design

our attack based on its readings associated with smartphone

loudspeaker’s speech signals. The attack is designed to work on

the Android platform, facilitated due to the “zero-permission”

nature of motion sensors (up to the latest Android 10). We exe-

cute the attack by carefully using off-the-shelf machine learning

and signal processing techniques to minimize attacking efforts

(Section 5). By using known techniques and tools, we believe

that our attack implementation has a significant value as it can

be created by low-profile attackers. Although we use standard

methods to keep our attacks more accessible, we had to ad-

dress several technical challenges like low sampling rates of the

motion sensors and appropriate feature set selection.

(3) A!ackEvaluationunderMultiple Setups:Weevaluate Spear-

phone under multiple setups mimicking near real-world usage

of smartphone loudspeakers (Section 6). We show that Spear-

phone can perform gender and speaker classification on media

playback, requiring as low as just one word of test data with

an f-measure ≥0.90 and ≥0.80 respectively, which shows the

threat potential of the attack. Promising, although slightly lower,

classification results are obtained for the voice call and voice as-

sistant response scenarios. The speech classification result also

shows the possibility of speech identification, essentially turn-

ing it into a loudspeaker for the attacker. Our evaluation and

datasets capture the three threat instances as they all require

the speech signals to be output by the phone’s loudspeakers.

2 BACKGROUND AND PRIORWORK
The embedded motion sensors in smartphones could leak a user’s

private information by capturing the vibrations associated with

users’ movements such as typing on the phone’s keyboard, causing

sensitive information leakage on mobile devices [16, 27, 29–31].

In addition, (sp)iPhone [27] showed that the vibrations generated

by typing on a physical keyboard, can be captured by a nearby

smartphone’s accelerometer to learn the user’s input. Additionally,

it is necessary to consider speech privacy in daily scenarios like

private meetings, phone conversations, audio media consumption.

Existing studies have shown that background noises affects MEMS

sensors [17, 20, 21]. Due to the low sampling rate of motion sen-

sors (200Hz on most smartphones), their capability of snooping on

speech is often ignored. However, recent work ([11, 28, 32]) shows

that the smartphone’s motion sensors could reveal speech informa-

tion. Specifically, [28] shows that gyroscope can measure acoustic

signals from an external loudspeaker to reveal speaker information.

[32] uses smartphone’s accelerometer to extract signatures from

the live human voice for hotwords extraction.

Speechless [11] analyzes the work done in [28] and defines the

nature of speech propagation that could affect motion sensors. In

particular, it points out that the surface propagation of speech af-

fects the motion sensors (surface-aided) in [28] while aerial speech

propagation (from vocal tracts to the embedded motion sensors)

may lack the necessary energy to impact them. Pitchin [24] pre-

sented an eavesdropping attack using embedded motion sensors

(having a higher sampling rate than a smartphone motion sensor)

in an IoT infrastructure, capable of speech reconstruction.

The above studies focus on the possibility of the embedded mo-

tion sensors responding to the external sound sources (e.g., loud-

speaker and live human voice). Our work explores the possibility

of revealing the speech from the smartphone’s built-in speakers,

using the phone’s own motion sensors. Compared to [28], we found

that the accelerometer performs better than the gyroscope, when

picking up the speech reverberations. Moreover, [28] examined

the speech from an external loudspeaker, which produces stronger
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sound/vibration signals and only targeted the local speaker’s speech

using their smartphone. Smartphone loudspeakers lack the wide

frequency response compared to an external loudspeaker (with

woofers), especially at low frequencies. Since the speech signals

producing vibrations, consist of low frequencies, our threat model

is weaker than [28] and it exploits both surface-aided and aerial vi-

brations, propagated within the smartphone’s own body. Thus, we

believe [28] presents a threat model very favorable to the attacker

but potentially too restrictive for the real world.

Amore recent study [14] also studied accelerometer-based speech

privacy inference under the setup that the accelerometer is on the

same smartphone as the speaker. However, this attack relies on

a sophisticated deep neural network (DNN) with fine-tuned hy-

perparameters, which significantly increases the attacking efforts.

Moreover, this type of attack requires the training data to be col-

lected on the victim’s phone only as cross-device training/testing

does not provide accurate results due to device hardware variability

(even between the same model phone). Having a considerably large

amount of training data, such as thousands of data samples required

by [14], for the DNN training thus makes the attack less practical.

To summarize, we identify and dissect live speech and media

instances in which the speech privacy attack through motion sen-

sors works, whereas a recent study [11] concluded these sensors

to be “speechless” in most other setups (humans speaking into the

phone, or when the loudspeaker does not share the same surface as

the phone). Our proposed setup and previous studies ([11, 28] use

a similar scenario but the key difference lies in the targeted speech.

In previous works, the targeted speech was from sources external

to the smartphone while we consider the speech that originates

from the smartphone itself via speech reverberations. Additionally,

we use lightweight classifiers and an off-the-shelf machine learning

tool to minimize attacking efforts and make Spearphone deployable

in practice. We elaborate our detailed attack model in Section 4.

3 SENSORS VS. SPEECH REVERBERATIONS
A smartphone’s body (Figure 1) provides an alternative pathway for

propagating the resulting sound reverberations to the accelerometer

and gyroscope in the phone, in addition to the air-borne vibrations(air-

borne propagation). The embedded motion sensors are designed

for sensing the phone motions. However, the above illustrated

sound reverberations can also allow their exploitation (due to zero-

permission nature). To measure the response of the accelerometer

to the built-in loudspeaker, we play a specific signal and record

the accelerometer readings with a smartphone (Samsung Galaxy

Note 4). The smartphone sensor sampling rate is 250Hz and it is

placed on a wood table. We generate a chirp sound signal, sweeping

from frequency 0Hz to 22kHz for 5 minutes, and play it through

the smartphone’s built-in loudspeaker at maximum volume.

We found that the accelerometer has a strong response to the

sound frequency ranging from 100Hz to 3300Hz. This is because

the built-in loudspeaker and the accelerometer are on the same

device, and the sound gets transmitted through the smartphone

components causing vibrations. Moreover, we observed that differ-

ent frequency sounds cause responses at the low frequency points

of the accelerometer and generate aliased signals [28], which can

be expressed by the equation 50 = |5 − # · 5B |, where 50 , 5 , 5B are

the vibration frequency of the accelerometer, sound frequency and

the accelerometer sampling rate. # can be any integer. Therefore,

the accelerometer can capture rich information from the sound but

with aliased signals in low frequency.

To determine the dominant propagationmedium in our proposed

attack, we compared the phone’s accelerometer response in two

settings: (1) an LG G3 phone’s accelerometer captures the speech

from its own loudspeaker; and (2) the G3 accelerometer captures

the speech from the loudspeaker of another phone placed near it

on the shared table. The volume of the played speech is adjusted

at the same level, and the distance between the loudspeaker and

the G3 phone’s accelerometer is kept the same. Appendix Figure 4

shows the root mean square (RMS) of the captured sensor readings.

We observe that our attack setting (smartphone body) possesses a

much higher response, as high as 0.2, than the shared solid surface

setting (around 0.05). It indicates that the smartphone body domi-

nates the vibration propagation so as to carry more speech-relevant

information in the captured accelerometer readings.

4 ATTACK OVERVIEW & THREAT MODEL

4.1 Spearphone Threat Instances

In Spearphone, we assume that the smartphone’s loudspeaker is

being used to output the audio. Some examples of Spearphone

threat instances are described as follows:

• Voice Call: In this threat instance, the victim is communicating

with another person and listening in the loudspeaker mode. We

assume the phone loudspeaker is at the maximum loudness level

to produce strongest speech reverberations (although we also

test the effect of lower volumes and validate the threat under

such conditions). The phone could be hand-held or placed on a

solid surface like a table. In this threat instance, the attacker is

able to capture reverberations on the victim’s phone, generated

in real time during the phone call.

• Multimedia: The live call instance could extend to situations

where speech is produced by smartphone’s loudspeakers while

playing a media file. While the content of the media may not

be private, an attacker can get some confidential information

about the victim (for example, Snapchat videos, preferred music).

Advertisement companies could use this information to target

victims with tailor-made ads. It could be a breach of privacy if a

person’s habits or behavior patterns are exposed to the attacker

that could potentially be used to discriminate them from jobs,

insurance purposes, financial benefits, etc.

• Assistant: Most modern smartphones come with an inbuilt voice

assistant for performing intelligent tasks. The voice assistant

often confirms the user’s command to ensure the desired action.

It makes the process user-friendly and gives the user a choice to

modify or cancel the current process. If the phone assistant uses

the inbuilt phone loudspeakers, any response from the phone

assistant is played back via these loudspeakers and can potentially

affect the motion sensors, in turn exposing the intent of the user

to an attacker exploiting the motion sensors.

4.2 Attacker’s Capabilities

The attacker in our threat model has similar capabilities as elabo-

rated in previous literature [11, 28]. The attacker can fool the victim

into installing a malicious application or a malicious website to
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Figure 1: Speech reverberations, propagatingwithin the smartphone’s

body, impact the motion sensors

track the motion sensor readings in the background [28]. These

malicious applications could be designed to get triggered for spe-

cific threat instances and start logging the motion sensor output.

For example, the attacker, using the malicious app, collects speech

samples that constitute the training data, over multiple voice calls.

This information could then be used to identify a speaker, in a

public zoom call where speaker identification may be difficult due

to multiple speakers. This threat model, is similar to some of the

prior work in this line of research [14, 28].

Spearphone attempts to compromise speech privacy by perform-

ing gender, speaker, and speech classification. More specific privacy

concerns for each type of classification/leakage are provided below.

We also limit our threat model to utilize a finite set of words (a

closed dictionary) although it could be expanded by identifying

individual phonemes contained in the speech.

• Gender Classification (Gen-Class): Gender classification can cause

a privacy compromise when the gender of a person may be used

to target them. Advertising sites could push spam advertisements

of products aimed towards a specific gender [19]. It can also be

used for gender discrimination([19]) where job search adver-

tisements were gender biased. Certain oppressive societies put

restrictions on particular genders and may use gender classifica-

tion to target individuals. Gender classification is relevant to the

Voice Call threat instance (Section 4.1) where the attacker is in-

terested in the identity of the remote caller that can be narrowed

down by the gender of the caller. Spearphone extracts speech

features from unlabeled motion sensor recordings and classifies

each extracted sample as originating from either male or female

speaker using classification models built on previously obtained

labeled samples of sensor recordings.

• Speaker Classification (Spk-Class): Speaker classification involves

identifying a speaker in a voice call. For example, an attacker

can learn if a particular individual was in contact with the phone

owner at a given time. Another example could be a person, under

surveillance by law enforcement, who is in contact with the

phone owner. It could also lead to leakage of the entire phone

log of the phone owner. This classification is most suited for the

Voice Call threat instance (Section 4.1) where the identity of the

remote caller can directly be revealed. Similar to Gen-Class the

attacker trains a classification model from the labeled dataset of

sensor recordings, associated with a unique speaker and then

tests the obtained unlabeled sensor recording against this model.

• Speech Classification (Speech-Class): Spearphone aims to learn

the actual words during the attack. To perform Speech-Class, we

build a classification model based on a finite word list. Speech

features from the obtained sensor readings for isolated words

are compared against the labeled features of the word list by the

classification model that provides the attacker with a possible

rendition of the actual spoken word. We also study the feasibility

of performing speech reconstruction by isolating words from

natural speech and then usingword recognition on isolatedwords

to reconstruct speech. Speech classification is relevant to all the

three threat instances (Section 4.1). It can disclose the specifics

of the call for the voice call threat scenario, leak the contents of

the media consumed by the victim and reveal the actions taken

by the voice assistant in response to the victim’s commands.

4.3 Attack Setup

In our model, we study the speech reverberations generated from

the smartphone’s inbuilt speakers. Therefore, we exclude any ex-

ternal vibration generating source such as external loudspeakers

studied in [11, 28]. Our threat model assumes the victim’s phone

is the only device that is present in the environment and the only

vibrations present in the environment are generated by the victim’s

smartphone speakers. This assumption is supported by the dis-

coveries of [11] and [18] that indicated that aerial vibrations from

ambient noise are too weak to affect the MEMS accelerometers.

To test the threat instances, we categorize two setups where the

victim’s phone speaker can impact the embedded motion sensors.
• Surface Setup: In this setup, the phone is kept on a flat surface

with its screen facing up. This setup may be used in Voice scenario

where the victim places the phone on a table while talking to

someonewith the phone on speakermode. This setup alsomimics

occurrences when the phone is put on a table, countertop etc. in

Multimedia scenario and Assistant scenario.This setup is similar

to [28] and [11] that were primarily focused on surface-borne

propagation of speech vibrations via a shared surface. However,

our setup also allows the possibility of aerial propagation of

speech vibrations due to the very close proximity of the speech

source (the phone speaker) and the accelerometer. As both reside

within the same device body, we do not rule out the effect of

aerial vibrations of speech on the accelerometer and hence use

the encompassing term “reverberations” as indicated in Figure 1.

• Hand Held Setup: The victim may also hold the phone in hand

while in Voice scenario, playing a media file inMultimedia scenario

or using their phone’s assistant in Assistant scenario. In our threat

model, we assume that while holding the phone in hand, the

victim is stationary with no hand or body movement.

The attacker can examine the captured data in an off-line manner

and use signal processing along with machine learning to extract

relevant information about the intended victim.

5 ATTACK DESIGN
Spearphone relies on the smartphone loudspeakers to generate

reverberations from the speech signals. We tested the ear piece

speaker, that is normally used to listen to incoming phone calls (a

target for our attacker). However, we did not observe any footprints

of speech, indicating incapability of the ear piece speaker to produce

speech reverberations strong enough to impact the accelerometer.

5.1 Motion Sensor Recording

We designed an Android application that mimics a malicious at-

tacker (Section 4). On start, the application begins logging motion

sensor readings. After a delay of five seconds, we play a single word
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while the application is recording motion sensor data. This step

partially mimics the act of the callee’s speech generated during a

phone/voice call or the playing of a media file on the phone via the

inbuilt loudspeakers. Our use of isolated words can also be extended

to continuous speech, but we do not aim to implement a complete

speech recognition system, limiting only to showcase the threat

posed by embedded motion sensors. Upon completion, we process

motion sensor readings as detailed in subsequent subsections.

5.2 Identifying Speech Areas

Once the attacker obtains motion sensor output from the mali-

cious application, he needs to extract speech areas for performing

Gen-Class, Spk-Class and Speech-Class (Section 4.2). Since we used

isolated words in our attack, each speech sample contains one

instance of a spoken word. As gyroscope did not display a notice-

able presence of speech in the spectrum of its readings (Section

3), accelerometer is the only motion sensor that is considered in

Spearphone. To extract speech from accelerometer recordings, we

trim off the beginning five seconds and ending two seconds of the

recordings to compensate for the initial delay before playing the

isolated word and the ending finger touch for pressing the “Stop”

button to pause the motion sensor recordings.

Since we see maximum response along the Z axis, for accelerom-

eter’s reaction against speech (Section 3), we try to determine the

speech areas along the Z axis readings and use corresponding areas

for the X and Y axes. To determine the area of speech in the Z axis

readings for accelerometer, a sliding window (size=100 samples)

is used. Since different words have varying lengths of utterance,

we picked the duration of the shortest word as the size of sliding

window. We calculate variance in each window to determine the

sensor behavior within that time. A higher variance in the readings

indicates the presence of an external motion (speech vibrations).

We extract the bounds of window with maximum variance as the

sensor readings influenced due to the presence of speech.

5.3 Feature Set for Speech Classification

Mel-Frequency Cepstral Coefficients (MFCC) are widely used in

audio processing as they give a close representation of human

auditory system. While MFCC features are sensitive to noise, our

threat model (Section 4) assumes minimal interfering noise. Time-

frequency domain features are another classification option that

consist of statistical features of the signal in time domain such as

minimum, maximum, median, variance, standard deviation, range,

absolute mean, CV (ratio of standard deviation and mean times

100), skewness, kurtosis, first, second and third quartiles, inter

quartile range, mean crossing rate, absolute area, total absolute

area, and total signal magnitude averaged over time. Frequency

domain features are calculated by using Fast Fourier transformation

(FFT). The FFT coefficients were used to derive energy, entropy and

dominant frequency ratio in time-frequency features.

We compared both MFCC and time-domain frequency features

to determine the most suitable feature set for classifying the speech

signals.We use themetrics (Section 5.4) and the following classifiers:

Support Vector Machine (used in [28]) with Sequential Minimal Op-

timization (SMO), Simple Logistic, Random Forest and Random Tree

(variants of the classifier used in [32]). We used the TIDigit word

list [2], for using isolated words, on LG G3 in Surface scenario. The

time-frequency features (Appendix Table 6) outperformed MFCC

features, using 10-fold cross validation for all algorithms. This result

(backed by [32]), led us to using it in our attack. Similarly, Ran-

dom forest outperformed other classifiers using the time-frequency

features (Appendix Figure 5 and Figure 6).

We further studied the distribution differences of time-frequency

features for Gen-Class, Spk-Class, and Speech-Class. Appendix Fig-

ure 7 shows the distribution of a subset of the most salient features

in box plots, which works best for Gen-Class. In particular, the

identified feature set includes the second quartiles (Q2), third quar-

tiles (Q3), signal dispersion (SigDisp), mean cross rate (MCR), ratio

of standard deviation over mean (StdMeanR) and energy, along

different axes. Similarly, we also identified the most effective time-

frequency features for Spk-Class, and Speech-Class (boxplots pre-

sented in Appendix Figures 8 and 9).

5.4 Evaluation Metrics

Precision indicates the proportion of correctly identified samples to

all the samples identified for that particular class. It is the ratio of

number of true positives to number of elements labeled as belonging

to the positive class. Recall is the proportion of correctly identified

samples to actual number of samples of the class. It is calculated

as the ratio of number of true positives to number of elements

belonging to the positive class. F-measure is the harmonic mean

of precision and recall. For perfect precision and recall, f-measure

value is 1 and for worst, it is at 0.

5.5 Design Challenges

5.5.1 Low Sampling Rates. Operating Systems like Android limit

the data output rate for motion sensors, to conserve the battery life,

valuable processing and memory power, which makes it harder to

turn the on-board motion sensors into microphones. Compared to

an audio microphone (sampling rate = 8kHz to 44.1kHz), motion

sensors are severely limited in their sampling rate. In addition, the

on-board loudspeakers may be limited in their capacity to correctly

reproduce the audio. Thus, we need to choose themotion sensor that

can capture most of the speech signal. We compared the frequency

response of both accelerometer and gyroscope in Section 3 and

the accelerometer’s response was stronger than the gyroscope’s

response in the frequency range 100 − 3300Hz (Section 3). Thus,

we make use of accelerometer in our experiments.

5.5.2 Complete Speech Reconstruction. Performing speech recon-

struction with the information captured by a low sampling rate

and low fidelity motion sensors may not be sufficient to recognize

isolated words. Moreover, it is unrealistic to generate a complete dic-

tionary (i.e., training profile) of all the possible words for the user’s

full speech reconstruction. To address these issues, we extracted the

time-frequency features from the accelerometer readings, which

exhibit rich information to distinguish a large number of words

based on existing classifiers (e.g., Random Forest and Simple Logis-

tic). We performed word isolation by analyzing the accelerometer

readings’s spectrogram under natural speech and calculated the

Root Mean Square of the power spectrum values. We developed a

mechanism based on searching the keywords (e.g., credit card num-

ber, targeted person’s name and SSN) and only used a small-sized

training set to reveal more sensitive information while ignoring

the propositions, link verbs and other less important words.
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6 ATTACK EVALUATION
6.1 Experiment Setup

Smartphones:We conducted our experiments using four smart-

phones: LG G3, Samsung Galaxy S6, Galaxy S8 and Note 4. The

experiments were performed in a quiet laboratory on a hardwood

table-top for Surface setup, while the Hand Held setup was con-

ducted by two participants holding the phone in their hands.

• Operating System: We focused on Android based smartphones as

they do not require explicit user permission to obtain access to

motion sensor data. In contrast, the iOS mobile operating system

(version 10.0+) requires any application accessing motion sensor

data to state its intent in the key “NSMotionUsageDescription".

The intent would be displayed to the user and failure to state

its intent results in immediate application exit. As pointed out

in Section 1, the sizeable market share of Android (worldwide

and the US) allows us to treat the threat posed to smartphones

operating on this platform with extreme concern.

• Sensors: The accelerometer embedded in the smartphones in

our experiments had an output data rate of 4-4000 Hz and an

acceleration range of ±2/±4/±8/±16g. The liner acceleration

sensitivity range are 0.06/0.12/0.24/0.48 mg/LSB. A comparison

with the LSM6DSL chip used in the latest Samsung Galaxy S10

smartphone indicates similar properties for the accelerometer.

Word Datasets: We used the subset of TIDigits corpus ([2]). It con-

tains 10 single digit pronunciation from “0” to “9” and 1 additional

pronunciation “oh”. It contains 5 male and 5 female speakers, pro-

nouncing the words twice. The sampling rate for the audio samples

is 8kHz. We also used a pre-compiled word list (PGP words Dataset)

uttered by Amazon Mechanical Turk workers in a natural environ-

ment. The list consisted of fifty-eight words from PGP words list

and they were instructed to record the words in a quiet environ-

ment. This data collection activity was approved by the university’s

IRB and the participants had the choice to withdraw from the ex-

periment at any given time. We used 4 male and 4 female Amazon

Turk workers’ audio samples (44.1 kHz sampling frequency). PGP

word list is used for clear communication over a voice channel and

is predominantly used in secure VoIP applications.

Speech Processing: We usedMatlab for processing the accelerom-

eter output performing feature extraction (Section 5).We usedWeka

[12] to perform gender, speaker and speech classification on the

extracted speech features. In particular, we test the attack with

Random Forest classifier that outformed other classifiers as noted

in Section 5.5. We used default parameters for the classification

algorithm and the detailed configurations are listed in Appendix

Table 5. We used both 10-fold cross-validation and the training and

testing methods for classification. 10-fold cross-validation parti-

tions the sample space randomly in 10 disjoint subspaces of equal

size, using 9 subspaces as training data and retaining 1 subspace as

testing data. For training and testing method, we split the dataset

into training set and test set with the split being 66% of the dataset

being used for training and remaining 34% being used for testing.

In our attack, the attacker collects the training samples for build-

ing the classifier, which is unique for each device. Since our dataset

is not large (limited to 58 words for PGP words and 22 words for

TIDigits), we believe that it does not indicate a significant overhead

for the attacker to procure the training samples for each device

Table 1: Gender and speaker classification (10 speakers) for Surface

setup using TIDigits and PGP words dataset using Random Forest

classifier and time-frequency features

10-fold cross validation Test and train
TIDigits PGP words TIDigits PGP words

Gender classification

Samsung Galaxy S8 0.98 0.99 0.97 0.99
Samsung Galaxy S6 0.91 0.80 0.87 0.82
Samsung Note 4 0.99 0.91 1.00 0.95

LG G3 0.89 0.95 0.85 0.95
Speaker classification

Samsung Galaxy S8 0.88 0.90 0.89 0.93
Samsung Galaxy S6 0.69 0.70 0.56 0.71
Samsung Note 4 0.94 0.80 0.92 0.80

LG G3 0.91 0.92 0.89 0.95

targeted under the attack. Most other motion sensor attacks to our

knowledge (e.g., [16, 27, 27, 29–31]), including Gyrophone, have

similar or even more strict training requirements for the attacker.

Effect of Noise: In our threat model, the loudspeaker resides on

the same device as the motion sensors. Thus, any reverberations

caused by the device’s loudspeaker would impact the motion sen-

sors. [11] and [18] claimed that external noise in human speech

frequency range, traveling over the air, does not impact the ac-

celerometer. Ba et al. [14] concluded that airborne acoustic noises

at regular frequency (below 22000Hz) and sound pressure level are

unlikely to distort the accelerometer measurements. Hence, any

such noise in the surroundings of the smartphone would be unable

to affect the accelerometer’s readings. The speech dataset used in

our experiment, PGP words dataset, was collected from Amazon

Mechanical Turk workers, recording their speech in environments

with varying degree of background noise. This dataset thus imitates

the speech samples that the attacker may face in the real-world,

such as during our attack instances involving phone calls.

6.2 Gender and Speaker Classification in Voice
Call Instance (Surface Setup)

6.2.1 Surface Setup using TIDigits. The results for the Surface setup,

where the victim’s phone is placed on a surface such as a table, using

TIDigits dataset is shown in Table 1 for Gen-Class and Spk-Class.

We observe that the attack was able to perform Gen-Class with an

f-measure > 0.80 with the attack being particularly successful on

Galaxy S8 and Note 4 as demonstrated in Table 1. As a baseline, the

scores are significantly better than a random guess attacker (0.50)

indicating the success of the attack in this setup. For Spk-Class, we

note that the attack is more successful on Samsung Galaxy S8, LG

G3 and Note 4 when compared to Galaxy S6 with f-measure > 0.60.

A random guess attack performance is significantly worse at 0.10

(for 10 speakers) when compared to this attack.

6.2.2 Surface Setup using PGP words dataset. In Table 1 for Gen-

Class and Spk-Class, comparing the attack against a random guess

attack (0.50), we observe that the reported f-measure for the attack

on all phone models was more than 0.70 in both 10-fold cross-

validation and train-test model. The attack on LG G3 and Samsung

S8 had an f-measure of over 0.90 consistently across all the tested

classification algorithms. Table 1 show Spearphone’s performance

when Spk-Class was performed using the PGP words dataset.

For a 10-speaker classification model, a random guess attack

would give us an accuracy of 0.10. In our tested setup, we were able

to achieve much higher f-measure scores with the attack on LG
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Table 2: Gender and speaker classification (10 speakers) for Hand

Held setup using TIDigits and PGP words dataset using Random For-

est classifier and time-frequency features

10-fold cross validation Test and train
TIDigits PGP words TIDigits PGP words

Gender classification

Samsung Galaxy S6 0.77 0.72 0.76 0.70
Samsung Note 4 0.81 0.87 0.77 0.88

LG G3 0.99 0.95 1.00 0.95
Speaker classification

Samsung Galaxy S6 0.33 0.34 0.26 0.29
Samsung Note 4 0.73 0.75 0.61 0.70

LG G3 0.98 0.93 1.00 0.95

G3 and Samsung S8 achieving a score of almost 0.90. The attack

on Galaxy S6 performed the worst among all the phones but still

had a better f-measure score of over 0.50 when compared to the

baseline random guess attack. These results lead to conclusion that

Spearphone threat could be performed using Spk-Class in this setup.

We also performed the binary classification for speakers by using

two classes “Targeted Speaker” and “Other”, that categorizes each

data sample as either in the voice of the target speaker or any

other speakers. We used PGP words dataset in our evaluation as it

contained more words per speaker compared to TIDigits dataset.

Using Random Forest classifier and 10-fold cross-validation, the

mean f-score for this binary speaker classification for LG G3 was

0.97, for Galaxy S6 was 0.90, and for Note 4 was 0.94.

6.3 Gender and Speaker Classification in Voice
Call Instance (Hand Held Setup)

6.3.1 Hand-held Setup using TIDigits dataset. In Table 2 for Gen-

Class, we observe that the performance of the attack on LG G3

is better when compared to other devices for both 10-fold cross-

validation model and train-test model with overall f-measure being

approximately 0.70, which is better than a random guess attacker

(0.50). For Spk-Class, we see that the scores of Galaxy S6 are worse

when compared to LG G3 with Note 4 having scores in between

these devices. The f-measure values for LG G3 for Spk-Class are over

0.90 for all the tested classifiers, for Note 4 these values are over

0.50 while Galaxy S6 values hover around 0.25. When compared to

a random guess attack (0.10), the attack on G3 is better while on

Galaxy S6 it is slightly better.

6.3.2 Hand-held Setup using PGP words dataset. The Gen-Class at-

tack result is shown in Table 2. The 10-fold cross-validation model

indicates that the f-measure value of the attacker’s classifier for LG

G3 is the best performer among all three phone models. Similar

to Surface, the attack performed better than a random guessing

attacker (0.50) while the performance of attack was similar to the

performance in Surface setup. The attack’s evaluation for Spk-Class

(Table 2) shows that the attack is able to perform speaker identifi-

cation for LG G3. The f-measure values, however, drop for Note 4

while the performance is worst for Galaxy S6. Thus, the attack’s

performance, while still better than a random guess attack (0.10),

suffers a bit of setback for Note 4 and more so for Galaxy S6. The

binary classification for speakers (previously described in Surface

setup) shows that the f-measure values when the smartphone is

hand-held (Hand Held setup) are similar to Surface setup. The f-

measure score averaged for 8 speakers with LG G3 was 0.97, for

Galaxy S6 was 0.84, and for note 4 was 0.92.

Table 3: Effect of loudness on gender and speaker classification accu-

racy using Samsung Note 4 for Surface setup using Random Forest

classifier and time-frequency features.

Volume Level
75%+>;<0G 80%+>;<0G +>;<0G

Gender
Classification

TIDigits 0.93 0.90 0.99
PGP word 0.78 0.95 0.91

Speaker
Classification

TIDigits 0.45 0.70 0.94
PGP words 0.54 0.79 0.80

6.4 Result Summary and Insights

The speaker classification accuracies for Note 4 and Galaxy S6 are

higher for PGP words compared to TIDigits. This may be because

PGP words dataset (sampled at 44.1kHz) was recorded at a higher

sampling rate when compared to TIDigits (8kHz). This effect is not

prominent in LG G3 because the sampling rate of its motion sensors

is slightly lower (120Hz) than Note 4 or Galaxy S6 (around 200Hz)

or S8(around 400 Hz). Ba et al. [14] performed a scalability study

using Samsung Galaxy S8 (420 Hz), Huawei Mate 20 (500 Hz) and

Oppo R17 (410Hz) and found an increase in the classification model

accuracy. Our results with Galaxy S8 in Table 1 are in-line with

the scalibility study, showing a better performance when compared

to other smartphones with lower sampling rates. The gender and

speaker classification accuracies seem to decrease a bit for the

PGP words dataset in some instances. We believe that due to some

background noise present in PGP words dataset, the accuracies may

have been affected negatively. The accuracies of LG G3 do not seem

to be impacted though, which we believe maybe due to its lower

sampling rate (making it less prone to data degradation).

Effect of Surface: Another interesting observation is that the Sur-

face setup overall produces better classification results than the

Hand Held setup. The hand motions and body movements are nega-

tive influences, but they only cause low frequency vibrations, which

have been removed by our high-pass filter. Another possible expla-

nation could be the vibration absorption/dampening caused by the

holding hand. To test this reasoning, we conducted experiments

with the Note 4 phone placed on a soft surface (i.e., soft couch). The

gender classification accuracy is 87.5%, similar to the handheld sce-

nario (87%), both of which are lower than the hard tabletop scenario.

This suggests vibrations are possibly being absorbed by the hand to

some degree. The speaker classification results overall seem similar

to speaker classification using audio recordings [25]. This behavior

may be an indication that prominent speech features present in

audio vibrations are also picked up by the accelerometer, as show-

cased by our experiments. Comparing our results with [28], we find

that they achieved the best case gender classification accuracy of

84% using DTW classifier on Nexus 4, which is lower than our ac-

curacy of almost 100% using Random Forest classifier on Samsung

Note 4, using the same dataset (TIDigits). For speaker classification,

we obtained a higher accuracy of over 90% using Random Forest

classifier on Samsung Note 4 while that for Micalevsky et al. [28]

was only 50% for mixed gender speakers using DTW classifier for

the same dataset (TIDigits). There is still room for improving the

accuracy by exploring more features and deep learning methods

(similar to [14]), which will be explored in our future work.

Effect of Loudness: We also evaluate the impact of the smart-

phone speaker volume on the performance of Spearphone. We test

the gender and speaker classification performance of Spearphone

when setting the smartphone speaker volume to 100%, 80%, and 75%
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of the maximum volume. Table 3 presents the results for Samsung

Note 4 phone, when it is placed on the table (i.e., Surface setup).

The results show that while lower volume does impact the accuracy

negatively, the lower volumes still achieve a robust accuracy (i.e.,

80% volume achieves 95% accuracy for gender classification and

79% accuracy for speaker classification with the PGP words dataset).

Also, the results indicate that the lower volume still causes privacy

leakage, when compared to the random guessing accuracy (i.e., 50%

for gender classification and 10% for speaker classification).

People tend to use maximum volume to make the speech clear

and comprehensible to avoidmissing any important information [8].

The louder volume, while providing clearer speech, would expose

speech privacy more significantly via our Spearphone attack. In

addition, we believe that the quality of the speakerphones on smart-

phones will improve over time and there are also powerful speaker

cases in use today that can be physically attached to the phones

[6, 7], and speech leakage over such higher quality speakerphones

could be more plausible, even at lower volume levels.

Natural Speech Dataset: While Spearphone achieves a high ac-

curacy for the isolated word data set (i.e., TIDigits/PGP words), we

further evaluated the performance of Spearphone with a natural

speech dataset (VoxForge [1]), which provides samples of sentences

(10 words long on average) spoken by 5 male and 5 female speakers,

with 100 samples for each speaker. In particular, for speaker clas-

sification, Spearphone achieves 91.3% with LG G3 using Random

Forest for 10-speaker classification under 10-fold cross validation.

The result is very similar to the speaker classification with the

isolated word datasets, which indicates that the possibility of the

attack in a practical natural speech scenario.

Realistic Voice Call Scenario: To evaluate the threat of Spear-

phone in more realistic scenarios like a real voice call, we down-

graded the sampling rate of our PGP words dataset to 8kHz. The

gender and speaker classification results (using f-measure scores)

on Samsung Note 4 for the dataset using random forest classifier

and 10-fold cross validation method were 0.73 and 0.47. For LG G3,

the gender and speaker classification results measured as f-measure

were 0.99 and 0.60. Compared to Table 1, we see an expected drop

in the speaker classification accuracy for the down-sampled PGP

words dataset. The gender classification accuracy degrades for Note

4 but such opposite behavior is observed for LG G3.

6.5 Speech Recognition in Voice Calls

We next demonstrate the feasibility of speech recognition using

Spearphone. We found that the G3 phone on a wooden table surface

exhibited better performance, when revealing speaker information.

Towards this end, we utilized G3 on a wooden table to investigate

the feasibility of Speech-Class. We compared the performance of us-

ing time-frequency features with that of MFCC features, and found

that time-frequency features give better classification accuracy than

MFCC features. We also noted that random forest classifier outper-

formed the other tested classifiers, so we used Random Forest as

our classifier on time-frequency features.

6.5.1 Speech-Class for Single Speaker. TIDigits dataset: Table 4

shows Spearphone’s accuracy of recognizing a single speaker’s 11

isolated digit numbers (TIDigits dataset). For 10-fold cross valida-

tion, using time-frequency features, we achieved an f-measure of

0.74 with Random Forest classifier. In comparison, a random guess

Table 4: Speech recognition results for PGP words and TIDigits

datasets using Random Forest classifier and time-frequency features

on LG G3

10-fold cross validation Test and train
TIDigits PGP words TIDigits PGP words

Single Speaker 0.74 0.81 0.62 0.74
Multiple speakers 0.80 0.75 0.71 0.67

attacker would achieve an accuracy of 0.09. Similar results were

obtained using train-test method for classification (Table 4), though

there was a slight decrease in recognition accuracy.

PGP words dataset: We further experimented with PGP words

to explore how accurate Spearphone could recognize the isolated

words other than the digits. Table 4 shows the Speech-Class results

under 10-fold cross validation. By using the time-frequency features,

Spearphone achieved a much higher f-measure score of 0.81 in

recognizing words in a 58-word list than digits. In comparison, the

random guess accuracy was only 0.02 for the dataset. The results

of the train-test model showed a slight decrease in performance.

6.5.2 Speech-Class for Multiple Speakers. There are plenty of sce-

narios involving multiple people’s voices presenting on a single

phone such as conference calls via Skype. We studied the feasibility

of speech recognition from multiple speakers. In particular, we

involve two speakers (one male; one female). Table 4 also shows

the f-measure scores when recognizing digit numbers from the two

speakers (multiple speaker scenario). We got an f-measure score

of 0.80 for the TIDigits dataset while the f-measure score for PGP

words dataset, for multiple speaker scenario, was 0.75. We also used

the PGP dataset, downsampled to 8kHz, to mimic real world tele-

phony voice quality. The speech recognition accuracy for multiple

speakers was 0.61, which as expected, is lower than the original

dataset but still above the random guess accuracy (i.e., 0.017).

Gyrophone [28] also carried out the speech recognition task

by using TIDigits dataset and 44 recorded words. However, they

addressed a totally different attack setup where the sound sources

were from an external loudspeaker and can achieve an accuracy

of up to 0.65. Our results of speech recognition accuracy around

0.82 indicate the vulnerability of smartphone’s motion sensors to

its own loudspeaker’s speech. Using the speech recognition and

speaker identification, Spearphone is capable of associating each

recognized word to the speaker identity in multi-speaker scenarios.

6.6 Speech Recognition in Multimedia and
Voice Assistant Instances

We also evaluated the Spearphone accuracy in multimedia and

voice assistant threat instances (Section 4.1). We used the same

techniques that we used for Speech-Class in voice calls (section 6.5.

We simulated the multimedia threat instance by utilizing VoxCeleb

dataset. VoxCeleb dataset [9] is a large-scale audio-visual dataset

of human speech, extracted from interview videos of celebrities

uploaded to YouTube. We used a single speaker, 100 word dataset

(where word truncation was done manually to extract each word)

and the average length of a word in the 100 word dataset was 7.2

characters. Using random forest classifier on time-frequency fea-

tures and 10-fold cross validation method, we were able to achieve

a speech recognition accuracy of 0.35 for LG G3. The classification

accuracy when the dataset was reduced to 58 words (for comparison
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(a) Isolating natural speech with digit string �0125�

(b) Isolating natural speech with sentence �Cottage cheese with chives is delicious�

Figure 2:Word isolation using the RMS of the accelerometer spectrum

with the PGP word dataset performance) was 0.54 for LG G3. Com-

pared to the speech classification accuracy for PGP words dataset

in Table 4 for LG G3, we see a decrease in the accuracy from 0.81 to

0.54. A random guess attack has an accuracy of 0.01 (for 100 words)

and 0.017 (for 58 words) indicating that our attack outperforms it

by an order of 30. We attribute the decrease in the classification

accuracy to the existing noise in the Youtube recordings.

We used Alexa voice assistant and generated PGP words dataset

in Alexa’s voice using the text-to-voice tool [5]. The text-to-voice

tool pairs with the Alexa voice assistant and provides a text input

feature to the user that is redirected to Alexa for repeating the user

input. The speech recognition accuracy for the 58 words PGP word

dataset was 0.31 for LG G3. This classification accuracy is again

lower than the one reported in Table 4 for LG G3 on PGP words

dataset, which was 0.81. Compared to a random guess attack, the

proposed attack outperforms it by a magnitude of 18. However,

Alexa’s voice assistant is not human voice, albeit an artificially

generated voice. Our feature set described in Section 5.3 was tuned

for recognizing characteristics of reverberations resulting from

human voices. We propose reevaluating the feature set in our future

work that is tuned based on artificially generated voices.

6.7 Speech Reconstruction (Natural Speech)

We have shown the capability of Spearphone to recognize isolated

words with high accuracy. To reconstruct natural speech, Spear-

phone performs Word Isolation and Key Word Search, which first

isolates each single word from the sequence of motion sensor read-

ings and then searches for sensitive numbers/words from isolated

words based on speech recognition introduced in Section 6.5.

6.7.1 Word Isolation. In order to reconstruct natural speech, the

words of the speech need to be first isolated from the motion sensor

readings and then recognized individually. However, isolating the

words from the low sampling rate and low fidelity motion sen-

sor readings is hard. To address this challenge, we calculated the

Root Mean Square (RMS) of the motion sensor’s spectrum at each

time point and then located local peaks based on a pre-defined

threshold to isolate each word. Figure 2 illustrates an example of

isolating a TIDigit string (“0125”) and a PGP sentence (“Cottage

cheese with chives is delicious”). The motion sensor’s spectrograms
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Figure 3: CDF of the prediction confidence level

were converted to the amplitude RMSs at the right side of the figure.

Based on the derived amplitude RMS, the valleys between the local

peaks were detected to segment the critical words. We observed

that some propositions and link verbs (e.g., “with” and “is”) could

hardly be detected, but this drawback has minimal effect on our

results as these words do not affect the ability to understand an

entire sentence. We further evaluated our word isolation method by

testing 20 sentences containing around 28 words per sentence, and

achieved 82% isolation success rate. By excluding the less important

propositions and link verbs, we achieve around 96% success rate.

6.7.2 Key Word Search. Key word search is also significant when

addressing natural speech. As it is hard to train all the potential

words of a natural speech beforehand, the adversary might be more

interested in the sensitive numbers/words (key words) (e.g., credit

card information, an important person’s name, SSN, etc.) while

marginal words such as propositions, link verbs and other such

words can be ignored. Thus, a limited-size dataset is sufficient for

stealing sensitive information.

After obtaining the isolated words, an adversary could search for

key words based on a pre-constructed training model. In particular,

Spearphone relies on the predication probability returned by the

training model as the confidence level to filter the key word search

results. Figure 3 shows the CDF of prediction confidence levels

when 2/3 PGP words are used as key words. We observed that the

key words have higher confidence levels compared to marginal

words. Thus, we could apply a threshold-based method to only

focus on recognizing the keywords. Further combination of word

isolation and key word search to reconstruct natural speech, re-

quires fine-grained segmentation of the words and usage of Hidden

Markov/other linguistic models for word corrections. This work is

an avenue for possible future work.

7 DISCUSSION AND FUTUREWORK

Attack Limitations: In our experiments, we initially put the smart-

phone loudspeakers at maximum volume to produce the strongest

reverberations in the body of the smartphone, for maximum impact

on the accelerometer. In reality, the loudness of different phones

model varies and is selective per user. Hence, we tested the effect

of loudness on the attack’s accuracy and found out that decreasing

the volume from maximum to 80%, still allowed the gender and

speaker classification (though lower than the full-volume attack).

While our experiments tested two different datasets, they are still

limited to single word pronunciations and are limited in size. How-

ever, single word accuracy can be extended to full sentence recon-

struction using language modeling techniques. Moreover, TIDigits

dataset, while relatively small, can still be effective in identifying

sensitive information that mainly consists of digits. Personal infor-

mation such as social security number, birthday, age, credit card
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details, banking account details etc., consist mostly of numerical

digits. So, we believe that the limitation of our dataset size should

not significantly downplay the perceived threat level of our attack.

Another factor to consider is the hand movement of the victim

while holding the smartphone. Our attack experiment involved

placing the phone either on a surface or held stationary in hand.

Both these setups keep the smartphone stationary. Accelword [32]

analyzed the impact of hand/body movements on accelerometers

embedded in the smartphones and concluded that a cutoff frequency

of 2 Hz would filter out the effect of these motions. Application

of such a filter could make the proposed attack compatible with

mobile setups, where the smartphone is not stationary.

Impact of Hardware Design: The speaker and the accelerometer

specifications are different across various smartphone models. The

accelerometers of the three models are similar but the loudspeaker

of Galaxy S6 is less powerful, whichmay account for lower accuracy

results on S6, especially in Hand Held where there is no contact

between the smartphone’s body and a solid surface. Besides, the

positions of the speaker and the accelerometer on the smartphone

may cause the acceleration patterns to respond to the same speech

word differently. This is because the reverberations caused by the

sound may transmit through different routes and get affected by dif-

ferent complex hardware components. Appendix Figure 10 shows

the motion sensor specifications for some popular brands of smart-

phones 1. For example, the speakers of LG G3 and Note 4 are at the

back of the smartphone, which can generate different levels of re-

verberations when placed on the table. In comparison, Galaxy S6’s

speaker is located at the bottom edge of its body, thereby having a

diminished effect when placed on the table.

Accelerometer Models: The three phone models tested in this

paper are embedded with the Invensense accelerometer. We fur-

ther analyzed the frequency response of another smartphone (Sam-

sung Galaxy S3 having the STMicroelectronics accelerometer chip),

to speech signals played via onboard loudspeaker. Our analysis

suggests that the response is similar to the LG G3 (Invensense ac-

celerometer) and both accelerometers show the frequency range

between 300Hz and 2900Hz. With the MEMS technology getting

better and the loudspeakers being louder and more refined with

every new generation of smartphone, we believe our attack should

raise more concerns about speech privacy from this perspective.

Potential Countermeasures:Most side channel attacks exploit-

ing motion sensors center around the zero permission nature of

these sensors. Android platform could implement stricter access

control policies to restrict the usage of these sensors. Users should

also be made aware of the implications of the permissions granted

to the applications. However, a stricter access control policy could

affect the usability of the smartphones. Even explicit usage per-

mission model often does not work, since users do not pay proper

attention to the asked permissions [23]. Moreover, many apps are

designed to be overprivileged by developers [22]. Another counter-

measure could filter sensitive speech frequencies from the captured

readings. However, due to signal aliasing, vibrations of a wide range

of frequencies are mapped non-linearly to the low sampling rate

1https://www.gsmarena.com/

accelerometer data. Both the higher frequencies and lower frequen-

cies contain the speech information. Thus, simply applying filters to

remove the upper or lower frequencies cannot mitigate this attack.

A potential defense against Spearphone could also be set up by

altering the hardware design of the phone. The motion sensors

could be insulated from the the phone’s speakers vibrations. To

mask or dampen the vibrations leaked from the phone’s speakers,

surrounding the speakers with vibration dampening material may

work. Speaker isolation pads are already in use in recording studios

for limiting sound vibration leakage [3]. Other solutions like [13]

also exist that dampen the surface-aided vibration propagation and

may be useful in preventing leakage of speech vibrations within the

smartphone. Further work is necessary to evaluate such a defensive

measure against the threat studied in the paper.

Comparison with Previous Works: Michalevsky et al. [28] us-

ing the gyroscope sensor on the smartphone, achieved gender and

speaker identification rate of 84% and 50% for a set of 10 speakers,

using TIDigits (a small dictionary containing only digits pronuncia-

tions). Our results on TIDigits and an additional PGP words dictio-

nary, present an improved gender and speaker identification rate

of over 90% on a multitude of smartphones, using the acceleroemter

and the speech sensing smartphone motion sensor. [11, 15] previ-

ously indicated that the accelerometer may be more responsive to

speech vibrations. We also utilize this fact in our experiments to

achieve a better recognition rate. Ba et al. [14] proposed a similar

work using deep learning neural networks, to achieve a speaker

recognition accuracy of 70% for 20 speakers. When compared, our

work achieves a higher recognition rate, using a lightweight random

forest classifier, albeit with a different word dictionary.

8 CONCLUSION

We proposed a novel side-channel attack that compromises the

phone’s loudspeaker privacy by exploiting accelerometer’s output

impacted by the emitted speech. This attack can leak information

about the remote human speaker (in a voice call) and the speech

that is produced by the phone’s speaker. In the proposed attack, we

use off-the-shelf machine learning and signal processing techniques

to analyze the impact of speech on accelerometer data and perform

gender, speaker and speech classification with a high accuracy.

Our attack exposes a vulnerable threat scenario for accelerome-

ter that originates from a seemingly inconspicuous source (phone’s

inbuilt speakers). This threat can encompass several usage instances

from daily activities like regular audio call, phone-based confer-

ence bridge inside private rooms, hands-free call mode and voice-

mail/messages played on the phone. This attack can also be used

to determine a victim’s personal details by exploiting the voice

assistant’s responses. We also discussed some possible mitigation

techniques that may help prevent such attacks.
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A APPENDIX

A.1 Classifier Configurations

Table 5: Configurations of tested classifiers

Classifier Configurations

SimpleLogistic -I 0 -M 500 -H 50 -W 0.0

SMO

-C 1.0 -L 0.001 -P 1.0E-12 -N 0 -V -1 -W 1 -K

-kernal PolyKernel -E 1.0 -C 250007

-calibrator Logistic -R 1.0E-8 -M -1 -num-decimal-places 4

RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1

RandomTree -K 0 -M 1.0 -V 0.001 -S 1

A.2 Accelerometer Response with Different
Propagation Medium
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Figure 4: The RMS of the accelerometer’s response to the two experi-

mental se!ings: (1) Smartphone body: the phone’s accelerometer cap-

tures the reverberations from the phone’s own loudspeaker; and (2)

Shared solid surface: the phone’s accelerometer captures the vibra-

tions from another phone’s loudspeaker via the shared solid surface.

A.3 Comparison of Various Classifiers
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(c) Speaker classification (10-
fold cross validation model)
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Figure 5: Gender and speaker classification (10 speakers) for Surface

setup using TIDigits dataset
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Figure 6: Gender and speaker classification (10 speakers) for Surface

setup using PGP words dataset

A.4 Time-frequency Feature List

Table 6: The time-frequency features calculated from accelerometer

readings of X, Y and Z axis over a sliding window

Time Domain

Minimum; Maximum; Median; Variance; Standard deviation; Range

CV: ratio of standard deviation and mean times 100

Skewness (3rd moment); Kurtosis (4th moment)

Q1, Q2, Q3: first, second and third quartiles

Inter Quartile Range: difference between the Q3 and Q1

Mean Crossing Rate: measures the number of times the signal crosses the mean value

Absolute Area: the area under the absolute values of accelerometer signal

Total Absolute Area: sum of Absolute Area of all three axis

Total Strength: the signal magnitude of all accelerometer signal of three axis averaged of all three axis

Frequency Domain

Energy

Power Spectral Entropy

Frequency Ratio: ratio of highest magnitude FFT coefficient to sum of magnitude of all FFT coefficients

A.5 Salient Features for Gender, Speaker, and
Word Classification
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Figure 7: Salient time-frequency feature distributions for Gen-Class.
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Figure 8: Illustration of the salient time-frequency features to differ-

entiate speakers.
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Figure 9: Illustration of the salient time-frequency features to differ-

entiate words.

A.6 Positions of Phone’s Speaker and Motion
Sensor

Figure 10: The speaker and the sensor positions on the smartphones

of different vendors.


